132 research outputs found

    Analyzing many-body localization with a quantum computer

    Full text link
    Many-body localization, the persistence against electron-electron interactions of the localization of states with non-zero excitation energy density, poses a challenge to current methods of theoretical and numerical analysis. Numerical simulations have so far been limited to a small number of sites, making it difficult to obtain reliable statements about the thermodynamic limit. In this paper, we explore the ways in which a relatively small quantum computer could be leveraged to study many-body localization. We show that, in addition to studying time-evolution, a quantum computer can, in polynomial time, obtain eigenstates at arbitrary energies to sufficient accuracy that localization can be observed. The limitations of quantum measurement, which preclude the possibility of directly obtaining the entanglement entropy, make it difficult to apply some of the definitions of many-body localization used in the recent literature. We discuss alternative tests of localization that can be implemented on a quantum computer.Comment: 11 pages, 8 figures; slightly revised, published versio

    Universality of single quantum gates

    Full text link
    We supply a rigorous proof that an open dense set of all possible 2-qubit gates G has the property that if the quantum circuit model is restricted to only permit swap of qubits lines and the application of G to pairs of lines, then the model is still computationally universal.Comment: 6 pages, 1 figure; added references to previous proof

    Pre-thermal phases of matter protected by time-translation symmetry

    Full text link
    In a periodically driven (Floquet) system, there is the possibility for new phases of matter, not present in stationary systems, protected by discrete time-translation symmetry. This includes topological phases protected in part by time-translation symmetry, as well as phases distinguished by the spontaneous breaking of this symmetry, dubbed "Floquet time crystals". We show that such phases of matter can exist in the pre-thermal regime of periodically-driven systems, which exists generically for sufficiently large drive frequency, thereby eliminating the need for integrability or strong quenched disorder that limited previous constructions. We prove a theorem that states that such a pre-thermal regime persists until times that are nearly exponentially-long in the ratio of certain couplings to the drive frequency. By similar techniques, we can also construct stationary systems which spontaneously break *continuous* time-translation symmetry. We argue furthermore that for driven systems coupled to a cold bath, the pre-thermal regime could potentially persist to infinite time.Comment: Published version, with new title and introductio

    Topological Crystalline Bose Insulator in Two Dimensions via Entanglement Spectrum

    Full text link
    Strongly correlated analogues of topological insulators have been explored in systems with purely on-site symmetries, such as time-reversal or charge conservation. Here, we use recently developed tensor network tools to study a quantum state of interacting bosons which is featureless in the bulk, but distinguished from an atomic insulator in that it exhibits entanglement which is protected by its spatial symmetries. These properties are encoded in a model many-body wavefunction that describes a fully symmetric insulator of bosons on the honeycomb lattice at half filling per site. While the resulting integer unit cell filling allows the state to bypass `no-go' theorems that trigger fractionalization at fractional filling, it nevertheless has nontrivial entanglement, protected by symmetry. We demonstrate this by computing the boundary entanglement spectra, finding a gapless entanglement edge described by a conformal field theory as well as degeneracies protected by the non-trivial action of combined charge-conservation and spatial symmetries on the edge. Here, the tight-binding representation of the space group symmetries plays a particular role in allowing certain entanglement cuts that are not allowed on other lattices of the same symmetry, suggesting that the lattice representation can serve as an additional symmetry ingredient in protecting an interacting topological phase. Our results extend to a related insulating state of electrons, with short-ranged entanglement and no band insulator analogue.Comment: 18 pages, 13 figures Added additional reference
    • …
    corecore